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Abstract. A new characterisation of the scale function on the locally compact
group G is given. It is shown that for x in G s(x), the scale of x, is the minimum
value attained by the index [xUx−1 : xUx−1∩U ] as U ranges over all compact
open subgroups of G. The properties of the scale function when passing to
subgroups and quotient groups of G and under increasing unions of groups are
also described.

1. Introduction

There is a function, called the scale function and denoted by s, defined on each
totally disconnected locally compact group G. The scale function is a continuous
map from G to the positive integers and has the following properties.

S1: s(x) = 1 = s(x−1) if and only if there is a compact open subgroup U of
G such that xUx−1 = U .

S2: s(xn) = s(x)n for every positive integer n and every x in G.
S3: ∆(x) = s(x)/s(x−1) for every x in G, where ∆ : G → R+ denotes the

modular function.
The scale function is defined in [6]. Its existence is closely related to the structure
of totally disconnected groups. For instance, in [4] the scale function and the
associated notion of tidy subgroup are used to prove a conjecture of K. Hofmann
and A. Mukherjea made in [3]. In [7] the scale function alone is used to prove
another conjecture of K. Hofmann.

In this paper the relation between the scale function on G and those on closed
subgroups, closed normal subgroups and quotient groups of G is investigated. Prop-
erty S3 suggests that, when passing to a subgroup or quotient group, the scale
function may factor in the same way as the modular function does, see [2] (15.23).
The theorems and examples given in Sections 4 and 6 show the extent to which
this is so. In Section 5 it is shown how the scale function behaves on increasing
unions and inverse limits of groups. Proposition 5.3 and Example 6.6 are the results
referred to in [5]. The results in these two sections extend work of E. Herman in [1]
and are a first step towards developing functorial properties of the scale function.

The scale function arises in [6] from some structure theorems for totally discon-
nected groups proved there. A new and more direct characterisation is given in
Theorem 3.1. For the proof of this characterisation it is necessary to recapitulate
some of the arguments from [6] and to give a revised, and much clearer, proof of

1991 Mathematics Subject Classification. Primary: 22D05 Secondary: 22D45, 20E25, 20E36.
Key words and phrases. locally compact group, scale function, tidy subgroup, modular func-

tion, automorphism.
Research supported by A.R.C. Grant A69700321.

1



2 G. WILLIS

the last step. We begin by recalling, and extending slightly, some of the concepts
and theorems from [6].

2. Tidy Subgroups and the Scale Function

The value of the scale function at an element x is defined in terms of the inner
automorphism αx : h "→ xhx−1 of conjugation by x. This definition extends to
arbitrary continuous automorphisms α of G, as may easily be seen by examining
the proofs in [6] or by applying the original definition to the semidirect product
G !α Z.

Definition 2.1. Let G be a totally disconnected locally compact group and α be
a continuous automorphism of G. Let U be a compact open subgroup of G and set

U+ =
∞⋂

n=0

αn(U) and U− =
∞⋂

n=0

α−n(U).

Then U is said to be tidy for α if it satisfies:
T1: U = U+U− = U−U+, and
T2:

⋃∞
n=0 αn(U+) and

⋃∞
n=0 α−n(U−) are closed in G.

It is shown in [6] that tidy subgroups exist for every continuous automorphism
α of G. Note that α(U) is a compact group and α(U)∩U is open. Hence the index
[α(U) : α(U)∩U ] is finite. It is further shown in [6] that this index is independent
of the choice of subgroup tidy for α. This index is thus a well defined function on
Aut(G).

Definition 2.2. The scale function, sG : Aut(G) → N is defined by

sG(α) = [α(U) : α(U) ∩ U ] (α ∈ Aut(G)),

where U is a subgroup tidy for α.

The subscript G on the scale function was not used in [6] because only one group
at a time was considered there but here we shall be comparing the scale functions
of different groups.

3. The Scale of α as a Minimum Value

In this section alternative characterisations of the scale function and tidy sub-
groups are proved. For this it is necessary to recapitulate the proof of the existence
of subgroups satisfying T1 and T2. In outline, the proof starts with an arbitrary
compact open subgroup U of G and constructs a subgroup tidy for α in three steps.

Step 1: Find an open subgroup V of U which satisfies T1.
Step 2: Identify a certain compact subgroup L of G which satisfies α(L) = L.
Step 3: Combine V and L to produce a compact open subgroup W which

satisfies T1 and T2, i.e. is tidy for α.
These steps are gone through in more detail in the proof of Theorem 3.1 below.
In steps 1 and 2 this involves recalling the main points from [6] but a new, and
clearer, proof of step 3 is given in full. We shall frequently make use of the fact
that [α(U) : α(U) ∩ U ] = [α(U+) : U+] for any U satisfying T1. This follows from
the proof of Lemma 1 in [6].
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Theorem 3.1. Let G be a totally disconnected locally compact group. Then for
every α in Aut(G)

sG(α) = min{[α(U) : α(U) ∩ U ] : U is a compact open subgroup of G}.
A compact open subgroup U of G is tidy for α if and only if

sG(α) = [α(U) : α(U) ∩ U ],

i.e., if and only if the minimum is attained at U .

Proof. Let U be an arbitrary compact open subgroup of G. We shall go through
steps 1, 2, and 3 and observe that

[α(U) : α(U) ∩ U ] ≥ [α(V ) : α(V ) ∩ V ] ≥ [α(W ) : α(W ) ∩W ].

Since U is an arbitrary subgroup and W is tidy, this will prove the first part of the
theorem. We shall also see that, if U is not already tidy, then one of the inequalities
is strict, thus proving the second part.
Step 1: Lemma 1 in [6] shows that there is an N such that V =

⋂N
n=0 αn(U)

satisfies T1. Then V+ = U+, where U+ and V+ are defined as in Definition 2.1.
Since α(U) ⊃ α(U+)(α(U) ∩ U), we have

(1) [α(U) : α(U) ∩ U ] ≥ [α(U+)(α(U) ∩ U) : α(U) ∩ U ],

with equality if and only if α(U) = α(U+)(α(U)∩U). (Note that α(U+)(α(U)∩U)
need not be a group but it is a set of cosets over α(U) ∩ U and the index on the
right is interpreted to mean the number of these cosets.) It follows from the proof
of Lemma 1 in [6] that this occurs if and only if U satisfies T1. Hence there is
equality in (1) if and only if U already satisfies T1. Now for u and v in α(U+),
u(α(U) ∩ U) = v(α(U) ∩ U) if and only if v−1u ∈ α(U+) ∩ U = U+, whence

[α(U+)(α(U) ∩ U) : α(U) ∩ U ] = [α(U+) : U+] = [α(V+) : V+].

Therefore
[α(U) : α(U) ∩ U ] ≥ [α(V+) : V+] = [α(V ) : α(V ) ∩ V ]

with equality if and only if U already satisfies T1.
Step 2: Define

(2) L = {u ∈ G : αn(u) ∈ V for all but finitely many integers n}
and let L be the closure of L. It is clear that α(L) = L and it is shown in [6]
Lemma 6 that L is compact.

The Corollary to Lemma 3 in [6] asserts that V is tidy if and only if L = V+∩V−.
Now V+ ∩ V− is just {u ∈ G : αn(u) ∈ V for every n} and so V is tidy if and only
if L = L ⊂ V . If V is not tidy, then a tidy subgroup W is obtained by ‘adding’ L
to V as described in the next step.
Step 3: The following criterion for a group element to belong to L will be cited
repeatedly.

Lemma 3.2. Let u be in V+ and suppose that {αn(u)}n≥0 has an accumulation
point. Then u belongs to L.

Proof. Let c be an accumulation point of {αn(u)}n≥0 and let N be a positive
integer. Choose n > N and m > 2n such that αm(u) and αn(u) belong to cV .
Then αn(u)−1αm(u) belongs to V and there are v ∈ V+ and w ∈ V− such that
αn(u)−1αm(u) = vw. Put kN = α−m(w) = α−m(v−1)αn−m(u)−1u.
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Then for p < N we have

(3) αp(kNu−1) = αp−m(v−1)αp+n−m(u)−1 which belongs to V+

because p−m < 0 and v−1 ∈ V+ and p+n−m < 0 and u ∈ V+. The same reasoning
implies that kN ∈ V+ and we also have αm(kN ) = w ∈ V−, so that kN ∈ L ⊂ L.
Since L is compact, it follows that {kN}N>0 has an accumulation point, l say, in L.
It follows from Equation (3) that αp(lu−1) ∈ V for every p ∈ Z, so that lu−1 ∈ L.
Therefore u ∈ L. !

The obvious way to add L to V is to try to define W to be V L, but this set need
not be a subgroup. The right definition of W uses instead

(4) V ′ = {v ∈ V : lvl−1 ∈ V L for all l ∈ L}.

Lemma 3.3. (1) V ′ is an open subgroup of V .
(2) Each v ∈ V ′ satisfies lvl−1 ∈ V ′L for all l ∈ L.
(3) V ′L is a compact open subgroup of G.

Proof. (1) Let v1 and v2 be in V ′. Then for every l ∈ L there are l1 ∈ L, u1 ∈ V
with lv1l−1 = u1l1 and l2 ∈ L, u2 ∈ V with l1lv2(l1l)−1 = u2l2, so that

lv1v2l
−1 = (lv1l

−1)(lv2l
−1) = u1(l1lv2(l1l)−1)l1 = u1u2l2l1

belongs to V L. Hence V ′ is a semigroup. Since V L is closed, V ′ is a closed
semigroup contained in the compact group V . It follows that V ′ is closed under
taking inverses and is therefore a group.

Since V ′ contains the open set
⋂

l∈L lV l−1, it is an open subgroup of V .
(2) Let v be in V ′ and l be in L. Then there are v1 ∈ V and l1 ∈ L such that

lvl−1 = v1l1. Now v1 = lvl−1l−1
1 and so for each m ∈ L there are v2 ∈ V and l2 ∈ L

such that
mv1m

−1 = (ml)v(ml)−1ml−1
1 m−1 = v2l2ml−1

1 m−1,

which belongs to V L. Hence v1 ∈ V ′ and so in fact lvl−1 belongs to V ′L.
(3) Since V ′ and L are compact sets, V ′L is compact and, since V ′ is open, V ′L

is open. To see that it is a subgroup, let v1l1 and v2l2 be in V ′L. Then there are
v3 ∈ V ′ and l3 ∈ L such that

(v1l1)(v2l2) = v1(l1v2l
−1
1 )l1l2 = v1v3l3l1l2.

Hence V ′L is a subsemigroup of the group G and so, since it is compact, is a
subgroup of G. !

We now define W to be V ′L. There is an apparent asymmetry in this definition
but, since V ′L, V ′ and L are groups, we have V ′L = (V ′L)−1 = L−1(V ′)−1 = LV ′.
Several lemmas are required to show that W is tidy.

Lemma 3.4. There is an integer p such that α−p(V+) ⊂ V ′+.

Proof. Since it is a subset of V and is invariant under α, V+ ∩ V− ⊂ L. That
V+ ∩ V− ⊂ V ′ now follows from the definition of V ′. Now {α−n(V+)}n≥0 is a
decreasing sequence of compact sets and

⋂
n≥0 α−n(V+) = V+ ∩ V−. Hence there

is p > 0 such that α−p(V+) is contained in the open neighbourhood V ′ of V+ ∩
V−. Since {α−n(V+)}n≥0 is decreasing, α−n(V+) ⊂ V ′ for every n ≥ p, whence
α−p(V+) ⊂ V ′+. !
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Lemma 3.5. (1) V ′+ = V ′ ∩ V+ = {v ∈ V+ : lvl−1 ∈ V+L for all l ∈ L}.
(2) Each v ∈ V ′+ satisfies lvl−1 ∈ V ′+L for all l ∈ L.
(3) V ′+L is a compact group and V ′+L = LV ′+.

Proof. (1) Since V ′ ⊂ V we have

V ′+ =
⋂

n≥0

αn(V ′) ⊂ V ′ ∩
( ⋂

n≥0

αn(V )
)

= V ′ ∩ V+.

Now let v be in V ′ ∩ V+. Then, for each l ∈ L, lvl−1 ∈ V L so that there
are u ∈ V+, w ∈ V− and m ∈ L with lvl−1 = uwm. Now w ∈ V− and w =
u−1lvl−1m−1 ∈ V+LV+L, whence {α−n(w)}n≥0 has an accumulation point. Hence,
by Lemma 3.2, w ∈ L and it follows that lvl−1 ∈ V+L. Therefore

V ′ ∩ V+ ⊂ {v ∈ V+ : lvl−1 ∈ V+L for all l ∈ L}.
Finally, let v belong to the latter set. Then for each n ≥ 0 and each l ∈ L,

lα−n(v)l−1 = α−n
(
αn(l)vαn(l)−1

)
∈ α−n(V+L)

because αn(l) ∈ L. Since α−n(V+L) = α−n(V+)L ⊂ V L for every n ≥ 0, this shows
that v ∈ V ′+. Thus

{v ∈ V+ : lvl−1 ∈ V+L for all l ∈ L} ⊂ V ′+

and the proof of (1) is complete.
Parts (2) and (3) are proved in exactly the same way as the corresponding parts

in Lemma 3.3. !
The corresponding statements hold for V ′− and V ′−L.

Lemma 3.6. V ′ = V ′+V ′−.

Proof. Let v be in V ′. Then v = uw for some u ∈ V+ and w ∈ V−. We will show
that u and w belong to V ′ which, by Lemma 3.5, will suffice to prove the desired
factoring of V ′. Since w = u−1v, it suffices to show that u belongs to V ′.

Let l be in L. By Lemma 3.4 there is p ≥ 0 such that α−p(u) ∈ V ′+. Since
LV ′+ = V ′+L and since L is invariant under α, it follows that

(5) lul−1 = u1m1 for some u1 ∈ αp(V ′+) and m1 ∈ L.

On the other hand, lvl−1 ∈ V L and so there are u2 ∈ V+, w2 ∈ V− and m ∈ L such
that

(6) lvl−1 = u2w2m2.

Now lvl−1 = (lul−1)(lwl−1) and so (5) and (6) yield u1m1lwl−1 = u2w2m2 whence

u−1
2 u1 = w2m2lw

−1l−1m−1
1 ∈ V−LV−L.

It follows that {αn(u−1
2 u1)}n≥0 has an accumulation point. Now u−1

2 u1 ∈ αp(V+)
and so, by Lemma 3.2, u−1

2 u1 ∈ L. Hence u1 ∈ u2L where u2 ∈ V+ and so, by
(5), it follows that lul−1 ∈ V+L. Since this holds for every l ∈ L we have that
u ∈ V ′. !

The next result shows that W satisfies T1.

Lemma 3.7. (1) (V ′L)± = V ′±L.
(2) V ′L = (V ′L)+(V ′L)−.
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Proof. For each n ≥ 0 we have α−n(V ′+L) = α−n(V ′+)L ⊂ V ′L. It follows that
V ′+L ⊂ (V ′L)+ and it may be shown similarly that V ′−L ⊂ (V ′L)−. Then both (1)
and (2) are implied by the inclusions

V ′L ⊂ V ′+V ′−L ⊂ (V ′+L)(V ′−L) ⊂ (V ′L)+(V ′L)− ⊂ V ′L,

where the first inclusion follows from Lemma 3.6, the second is trivial, the third
follows from above and the fourth is trivial. !

Define

K = {v ∈ G : αn(v) ∈ W for all but finitely many integers n}.
Since W satisfies T1, it follows as in step 2 that W will satisfy T2 if K ⊂ W . The
next lemma verifies this.

Lemma 3.8. K ⊂ L.

Proof. Let w belong to K. Then there are integers p ≤ q such that αp(w) ∈ W+

and αq(w) ∈ W−. Since W = V ′L and, by Lemma 3.7, (V ′L)+ = V ′+L, there
are u ∈ V ′+ and l ∈ L with αp(w) = ul. Now αq−p(u) = αq(w)αq−p(l−1) ∈ V ′−L,
whence {αn(u)}n≥0 has an accumulation point. By Lemma 3.2, u belongs to L and
it follows that w is in L. !

It remains to show that [α(W ) : α(W ) ∩W ] ≤ [α(V ) : α(V ) ∩ V ], with equality
only if V satisfies T2. For this we recall from step 1 that, since W and V both satisfy
T1, [α(W ) : α(W ) ∩ W ] = [α(W+) : W+] and [α(V ) : α(V ) ∩ V ] = [α(V+) : V+].
Hence it will suffice to show that

(7) [α(W+) : W+] ≤ [α(V+) : V+]

with equality only if V satisfies T2.

Lemma 3.9. [α(V+) : V+] = [α(V ′+) : V ′+].

Proof. By definition V ′+ ⊂ V+ and, by Lemma 3.4, there is p ≥ 0 such that
α−p(V+) ⊂ V ′+. Hence

α−p(V ′+) ⊂ α−p(V+) ⊂ V ′+ ⊂ V+

and

[V+ : α−p(V ′+)] = [V+ : V ′+][V ′+ : α−p(V ′+)]
= [V+ : α−p(V+)][α−p(V+) : α−p(V ′+)]

Since α is an automorphism [V+ : V ′+] = [α−p(V+) : α−p(V ′+)] and so we have that
[V ′+ : α−p(V ′+)] = [V+ : α−p(V+)]. The result follows because [V+ : α−p(V+)] =
[α(V+) : V+]p and [V ′+ : α−p(V ′+)] = [α(V ′+) : V ′+]p. !
Lemma 3.10. [α(V ′+L) : V ′+L] ≤ [α(V ′+) : V ′+] with equality if and only if L ⊂ V ′+.

Proof. Define a map ϕ : α(V ′+)/V ′+ → α(V ′+L)/V ′+L by ϕ(uV ′+) = uV ′+L. Since
α(V ′+L) = α(V ′+)L, ϕ is well-defined and surjective. Hence

∣∣α(V ′+L)/V ′+L
∣∣ ≤

∣∣α(V ′+)/V ′+
∣∣

which is just the inequality to be proved.
It is clear that ϕ is injective if L ⊂ V ′+. Suppose that L *⊂ V ′+. Then L *⊂ V ′+

and, by acting with some power of α, we may find w ∈ L ∩ α(V ′+) \ V ′+. Then
wV ′+ *= V ′+ and ϕ(wV ′+) = wV ′+L = V ′+L and so ϕ is not injective. !
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Recalling that W+ = V ′+L and noting that L ⊂ V if and only if L ⊂ V ′+, Lemmas
3.9 and 3.10 imply (7) and the proof is complete. !

The next result follows immediately from the theorem because a subgroup U is
tidy for α if and only if it is tidy for α−1.

Corollary 3.11. Let α be a continuous automorphism of the totally disconnected
locally compact group G and let U be a compact open subgroup of G. Then
[α(U) : α(U) ∩ U ] equals the minimum value sG(α) if and only if
[α−1(U) : α−1(U) ∩ U ] equals the minimum value sG(α−1). !

Is there a direct proof of the corollary which does not use tidy subgroups?

Remark 3.12. (a) The proof of Theorem 3.1 describes an algorithm for finding a
subgroup tidy for α and computing sG(α). The algorithm is effective provided that
effect can be given to the existence assertions in the applications of compactness
made in the proof. If G is discrete, then the algorithm is complete after Step 1
because a finite subgroup V has been found satisfying α(V ) = V . Of course we
know already in this case that sG(α) = 1 and {e} is tidy. All the steps in this
algorithm appear to be necessary, as can be seen by applying it to the subgroup U
described in Example 6.1.
(b) This construction of tidy subgroups differs from the construction given in [6]
in the definition of the subgroup V ′. In [6] the subgroup playing the role of V ′

is defined to be
⋂

l∈L lV l−1. This subgroup is obviously normalised by L and so
the equivalent of Lemma 3.3 is not required. However the present construction
is clearer and is also the ‘right’ algorithm for finding tidy subgroups because at
each step the index [α(U) : α(U) ∩ U ] is reduced. That is not the case for the
construction in [6] because it can happen that [α(V ′′+ ) : V ′′+ ] > [α(V+) : V+], where
V ′′ denotes

⋂
l∈L lV l−1, see Example 6.3.

4. The Scale Function on Subgroups and Quotient Groups

Tidy subgroups and the scale function are natural features of the structure of a
totally disconnected group but as yet their behaviour under group homomorphisms
is not understood. E. Herman has investigated the properties of the scale function
on subgroups and quotient groups in his thesis [1]. Results in this section extend
some of his work.

Lemma 4.1. Let G be a totally disconnected locally compact group, α be a con-
tinuous automorphism of G and let U be a compact open subgroup of G which is
tidy for α. Suppose that H is a closed subgroup of G such that α(H) = H and put
U ′ = U ∩H. Then U ′ is a compact open subgroup of H and there is an integer n
such that

⋂n
k=0 αk(U ′) is tidy for α|H .

Proof. It is clear that U ′ is a compact open subgroup of H. Lemma 1 in [6] shows
that there is an integer n such that

⋂n
k=0 αk(U ′) def= V satisfies T1. Now V+ = U ′+,

whence V++ = U ′++ = U++ ∩H, which is closed. Hence V satisfies T2 and is tidy
for α|H . !

Since
⋂n

k=0 αk(U) is tidy for α and H ∩
⋂n

k=0 αk(U) equals V , tidiness is some-
times preserved when restricting to subgroups.
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Corollary 4.2. Let G be a totally disconnected locally compact group, α be a con-
tinuous automorphism and H be a closed subgroup of G such that α(H) = H. Then
there is a compact open subgroup U of G which is tidy for α and such that H ∩ U
is tidy for α|H . !

Example 6.4 shows however that it is not always the case that H ∩ U is tidy
for α|H when U is tidy for α. Even so, the corollary does allow the following
comparison between the scale function on G and its restriction to a subgroup. This
extends Theorems 4.2 and 4.5 in [1].

Proposition 4.3. Let H be a closed subgroup of the totally disconnected locally
compact group G and let α be a continuous automorphism of G such that α(H) = H.
Then

sH(α|H) ≤ sG(α).

Proof. Choose U such that U and H∩U are tidy for α and α|H respectively. Define
ϕ : α(H ∩U+)/(H ∩U+) → α(U+)/U+ by ϕ(u(H ∩U+)) = uU+, (u ∈ α(H ∩U+)).
Since sH(α|H) =

∣∣α(H ∩ U+)/(H ∩ U+)
∣∣ and sG(α) =

∣∣α(U+)/U+

∣∣, it will suffice
to show that ϕ is injective.

Suppose that ϕ(u(H ∩ U+)) = ϕ(v(H ∩ U+)) for some u, v in α(H ∩ U+). This
means that there is x ∈ U+ with u = vx, but then x = v−1u and so x belongs to
H as well. Hence u(H ∩ U+) = v(H ∩ U+). !

The above proof shows that ϕ is a bijection between α(H ∩ U+)/(H ∩ U+) and
α(H ∩ U+)U+/U+ and so sH(α|H) can be computed using subgroups of G.

Corollary 4.4. Under the hypotheses of the Proposition we have

sH(α|H) = [α(H ∩ U+)U+ : U+].

!
It might be thought that sH(α|H) should divide sG(α) when H is a closed sub-

group of G but Example 6.2 shows that that is not the case in general. However,
it is so when H is a normal subgroup of G. Some further notation is required for
this.

Let H be a closed normal subgroup of G. Then q : x "→ xH : G → G/H
will denote the quotient map. A continuous automorphism α of G which leaves H
invariant induces an automorphism α̇ of G/H by α̇(xH) = α(x)H.

Lemma 4.5. Let G be a totally disconnected locally compact group G, H be a
closed normal subgroup of G and α be a continuous automorphism of G such that
α(H) = H. Then there is a subgroup, U , of G which is tidy for α and such that
(1) U ∩H is tidy for α|H and
(2) q(U) satisfies T1 for α̇ and Lq(U) = q(U)L, where L is the closure of

(8)
{
wH ∈ G/H : α̇n(wH) ∈ q(U) for all but finitely many n

}
.

Proof. Choose V < G tidy for α and such that V ∩H is tidy for α|H . Then

q(V±) = q(
⋂

n≥0

α±n(V )) ⊂
⋂

n≥0

q(α±n(V )) =
⋂

n≥0

α̇±n(q(V )) = q(V )±.

Since V satisfies T1, we have q(V ) ⊂ q(V+)q(V−) ⊂ q(V )+q(V )−, so that q(V )
satisfies T1.
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As in Equation (4) in the proof of Theorem 3.1, define L to be the closure of
{
wH ∈ G/H : α̇n(wH) ∈ q(V ) for all but finitely many n

}
.

and

q(V )′ =
{
wH ∈ q(V ) : (lH)(wH)(lH)−1 ∈ q(V )L for all lH ∈ L

}
.

Now set
U = V ∩ q−1

(
q(V )′

)
.

Then q(U) = q(V )′ and so q(U) satisfies T1 by Lemma 3.6 and q(U)L = Lq(U) by
Lemma 3.3. Also note that Lemma 3.4 implies that L satisfies the (8). Since H is
the kernel of q, we have U ∩H = V ∩H, which is tidy for α|H . It remains to show
that U is tidy for α.

Let u belong to U . Then u = vw, where v ∈ V+ and w ∈ V−. Hence q(u)
belongs to q(V )′ and q(u) = q(v)q(w) where q(v) ∈ q(V )+ and q(w) ∈ q(V )−. The
proof of Lemma 3.6 shows that in fact q(v) and q(w) belong to q(V )′+ and q(V )′−
respectively. Then q(α−n(v)) = α̇−n(q(v)) belongs to q(V )′ for each n ≥ 0, whence
α−n(v) is in U for each n ≥ 0 and v ∈ U+. That w ∈ U− follows similarly and so
U satisfies T1.

Finally, since V satisfies T2 and U ⊂ V ,

{u ∈ U : αn(u) ∈ U for all but finitely many n} ⊂ V+ ∩ V−.

Clearly, q(V+∩V−) ⊂ L. Hence q(V+∩V−) ⊂ q(V )′ and, consequently, V+∩V− ⊂ U .
Therefore U satisfies T2. !

As seen in the proof of Theorem 3.1, q(U)L is tidy for α̇, but it is not possible
in general to find a compact open subgroup U of G such that U is tidy for α and
q(U) is tidy for α̇, see Example 6.5.

Lemma 4.6. Let G, H, α and U be as in the previous lemma. Then there is a closed
subgroup J < G such that α(H ∩U+)U+ < J < α(U+) and sG/H(α̇) = [α(U+) : J ].

Proof. The group q(U)L < G/H, where L is as defined in the previous lemma, is
tidy for α̇. Hence sG/H(α̇) = [α̇

(
q(U)+

)
L : q(U)+L].

Although q(U)+L need not be normal in α̇
(
q(U)+

)
L, the proof of the first iso-

morphism theorem for groups shows that there is a bijection

α̇
(
q(U)+

)
/
(
α̇
(
q(U)+

)
∩ q(U)+L

)
→ α̇

(
q(U)+L

)
/q(U)+L.

Hence sG/H(α̇) = [α̇
(
q(U)+

)
: α̇

(
q(U)+

)
∩ q(U)+L]. Now q restricts to a homo-

morphism q̃ : α(U+) → α̇
(
q(U)+

)
. Define

J = q̃−1
(
α̇
(
q(U)+

)
∩ q(U)+L

)
,

a closed subgroup of α(U+). To see that α(H ∩ U+)U+ < J , note that, since
α(H ∩ U+) < H, we have q

(
α(H ∩ U+)U+

)
= q(U+) and then note that q(U+) <

α̇
(
q(U)+

)
∩ q(U+)L.

It follows immediately from the definition of J that

[α(U+) : J ] ≤ [α̇
(
q(U)+

)
: α̇

(
q(U)+

)
∩ q(U)+L].

For the proof of the inequality in the other direction, consider α̇
(
q(u)

)
∈ α̇

(
q(U)+

)
.

Since U is tidy, there are v and w in U+ and U− respectively such that u = vw. Then
α̇
(
q(u)

)
= q

(
α(v)

)
q
(
α(w)

)
where q

(
α(v)

)
∈ q

(
α(U+)

)
. It follows that q

(
α(w)

)
∈
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α̇
(
q(U)+

)
and then, since α(w) ∈ U , that q

(
α(w)

)
∈ q(U)+. Hence each coset in

α̇
(
q(U)+

)
/
(
α̇
(
q(U)+

)
∩ q(U)+L

)
has a representative belonging to q

(
α(U+)

)
and

so

[α(U+) : J ] ≥ [α̇
(
q(U)+

)
: α̇

(
q(U)+

)
∩ q(U)+L].

!

Theorem 4.8 in [1] shows that if the scale function on G is identically one then
the same is true on any quotient of G. We can now extend this result as follows.

Proposition 4.7. Let G be a totally disconnected locally compact group and H be
a closed normal subgroup of G. Then sH(α|H)sG/H(α̇) divides sG(α).

Proof. Choose a compact open subgroup U of G satisfying the conditions guaran-
teed by Lemma 4.5.

Since H is normal in G, α(H ∩ U+) is normal in α(U+) and α(H ∩ U+)U+ is a
group. Hence, by Lemma 4.6, we have the inclusion of subgroups

U+ < α(H ∩ U+)U+ < J < α(U+)

and it follows that

sG(α) = [α(U+) : U+] = [α(U+) : J ][J : α(H ∩ U+)U+][α(H ∩ U+)U+ : U+].

By Corollary 4.3, [α(H ∩ U+)U+ : U+] = sH(α|H) and Lemma 4.6 shows that
[α(U+) : J ] = sG/H(α̇). !

The next result applies to the scale function on groups rather than automorph-
isms. Recall that the scale function on G is given by sG(x) = sG(αx) (x ∈ G),
where αx is the inner automorphism αx : y "→ xyx−1.

Proposition 4.8. Let H be a closed normal subgroup of G. Then sH = sG|H .

Proof. Let x be in H. Choose a subgroup U < G which is tidy for αx and such
that H ∩ U is tidy for αx|H . Then for each u ∈ U+ we have

(
xux−1

)
u−1 = x

(
ux−1u−1

)
,

where the left side belongs to xU+x−1 and the right side to H because H is normal.
Hence (xux−1)u−1 belongs to H ∩ xU+x−1 = x(H ∩ U+)x−1 and it follows that
xux−1 ∈ x(H ∩ U+)x−1U+. Therefore [xU+x−1 : U+] = [x(H ∩ U+)x−1U+ : U+]
and Corollary 4.4 shows that sH(x) = sG(x). !

The modular function on G satisfies the identity

∆G(x) = ∆H(αx)∆G/H(xH) (x ∈ G),

whenever H is a closed normal subgroup of G, see [2] (15.23). Propositions 4.7 and
4.8 are the analogues of this for the scale function. It is not true that sG(α) =
sH(α|H)sG/H(α̇) in general, see Example 6.4.
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5. Increasing Unions and Inverse Limits of Groups

The behaviour of the scale of an automorphism α of G on an increasing union⋃
n≥0 Hn of closed subgroups of G such that, for each n, α(Hn) = Hn is described

below. An example of such an automorphism is the inner automorphism αx where
x belongs to H1. For such automorphisms we may speak of the uniform behaviour
of sHn(αx|Hn) for x in compact subsets of H1 and this is done in Proposition 5.3.

The results shown here for increasing unions could be proved for directed unions
of closed subgroups of G, i.e., for unions of families {Hi}i∈I such that for each pair
i1, i2 ∈ I there is i3 ∈ I such that Hi1 ∪ Hi2 ⊂ Hi3 , but they would be slightly
more complicated to state.

Lemma 5.1. Let H be a closed subgroup of the totally disconnected locally compact
group G. Let α ∈ Aut(G) satisfy α(H) = H, sH(α|H) = sG(α) and sH(α−1|H) =
sG(α−1). Let U be a compact open subgroup of G which is tidy for α and with
V = U ∩H tidy for α|H . Then U = V (U+ ∩ U−).

Proof. Since U satisfies T1, the proof of Lemma 1 in [6] shows that for each n ≥ 0
we have αn(U) = αn(U+)

(⋂n
k=0 αk(U)

)
. Since sH(α|H) = sG(α) and U and V

are tidy, the map ψ : αn(V+)/V+ → αn(U)/
(⋂n

k=0 αk(U)
)

defined by ψ(vV+) =
v

(⋂n
k=0 αk(U)

)
is a bijection. Hence for each u ∈ U the compact set

Cn(u) def=

{
v ∈ V+ : αn(v−1u) ∈

n⋂

k=0

αk(U)

}

is not empty. As in the proof of Lemma 1 in [6], we have Cn+1(u) ⊂ Cn(u) for each
n, so that

⋂
n≥0 Cn(u) *= ∅.

Given u ∈ U , choose v ∈
⋂

n≥0 Cn(u). Then u = vu′, where v ∈ V+ and
u′ ∈

⋂
k≥0 α−k(U) = U−. Repeating this argument for u′ and α−1 we find w ∈ V−

and u′′ ∈ U+ ∩ U− such that u′ = wu′′. Then u = (vw)u′′ where vw ∈ V and
u′′ ∈ U+ ∩ U−. !
Lemma 5.2. Let {Hn} be an increasing sequence of closed subgroups of the totally
disconnected locally compact group G. Let α ∈ Aut(G) be such that α(Hn) = Hn

for each n and sHn(α|Hn) and sHn(α−1|Hn) are independent of n. Then there are
subgroups Vn < Hn tidy for α|Hn and such that Vn ∩H1 = V1 for each n.

Proof. Choose U < G which is tidy for α. By Lemma 4.1 we may suppose that
U ∩H1 is tidy for α|H1 . Set V1 = U ∩H1.

Let n be greater than 1. By Lemma 4.1 there is r ≥ 0 such that
⋂r

k=0 αk(U)∩Hn

is tidy for α|Hn . By Lemma 5.1,
r⋂

k=0

αk(U) ∩Hn =

(
r⋂

k=0

αk(U) ∩H1

)
Ln =

(
r⋂

k=0

αk(V1)

)
Ln,

where Ln
def=

(⋂r
k=0 αk(U) ∩Hn

)
+
∩

(⋂r
k=0 αk(U) ∩Hn

)
−. Hence

(
r⋂

k=0

αk(V1)

)
Ln = Ln

(
r⋂

k=0

αk(V1)

)
.

Now let u ∈
(⋂r

k=0 αk(V1)
)
+

and l ∈ Ln. Then ulu−1 = vwm, where v ∈(⋂r
k=0 αk(V1)

)
+
, w ∈

(⋂r
k=0 αk(V1)

)
− and m ∈ Ln. Since w = v−1ulu−1m−1,
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{α−n(w)}n≥0 has an accumulation point and so, by Lemma 3.2,

w ∈
(

r⋂

k=0

αk(V1)

)

+

∩
(

r⋂

k=0

αk(V1)

)

−

⊂ Ln.

It follows that (
r⋂

k=0

αk(V1)

)

+

Ln = Ln

(
r⋂

k=0

αk(V1)

)

+

.

By noting that
(⋂r

k=0 αk(V1)
)
+

= (V1)+, this may be written more briefly as

(9) (V1)+Ln = Ln(V1)+.

Now
(⋂r

k=0 α−k(U)
)
∩Hn = α−r

(⋂r
k=0 αk(U) ∩Hn

)
is tidy for α|Hn and

(
r⋂

k=0

α−k(U) ∩Hn

)

+

∩
(

r⋂

k=0

α−k(U) ∩Hn

)

−

= α−r(Ln) = Ln.

A similar argument to the above, using this and noting that
(⋂r

k=0 α−k(V1)
)
− =

(V1)−, shows that

(10) (V1)−Ln = Ln(V1)−.

Define
Vn = V1Ln = (V1)+(V1)−Ln.

Then equations (9) and (10) and the fact that (V1)+(V1)− = (V1)−(V1)+, imply
that Vn is a subgroup of Hn and it is compact because V1 and Ln are. Since
Vn ⊃

⋂r
k=0 αk(U) ∩ Hn, Vn is an open subgroup of Hn. It is easily verified that

(Vn)± = (V1)±Ln and thence that Vn is tidy for α|Hn . That Vn ∩H1 = V1 is also
easily checked. !

It is a necessary step in the proof that V1 should be chosen by intersecting
H1 with a tidy subgroup of G as the conclusion may not hold for arbitrary tidy
subgroups of H1. Let H be a closed subgroup of G and let α ∈ Aut(G) satisfy
α(H) = H and that the values of the respective scale functions agree. Then it is
not in general the case that every tidy subgroup of H is the intersection of H with
a tidy subgroup of G, see Example 6.7.

We now specialise to the case where the automorphism is conjugation by x for
some x in H1 and regard the scale as a function on G. Thus s(αx) will be denoted
by s(x).

Proposition 5.3. Let {Hn} be an increasing sequence of closed subgroups of the
totally disconnected locally compact group G. Then for each x ∈ H1 the limit
limn→∞ sHn(x) exists and the convergence is uniform on compact subsets of H1.

Proof. Proposition 4.3 implies that for each x in H1 {sHn(x)}n≥0 is an increasing
sequence of integers bounded by sG(x). Hence limn→∞ sHn(x) exists. In fact,
{sHn(x)}n≥0 is constant after finitely many terms.

Let K be a compact subset of H1. Then for each x ∈ K there is an integer N(x)
such that sHn(x) and sHn(x−1) are constant for n ≥ N(x). Lemma 5.2 shows that
there are, for n ≥ N(x), compact open sets V (x)

n < Hn tidy for x and such that
V (x)

n ∩HN(x) = V (x)
N(x). Put V (x)

1 = V (x)
N(x) ∩H1 – a compact open subgroup of H1.
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Theorem 3 in [6] shows that sHn is constant on xV (x)
n ⊂ Hn. In particular, sHn

is constant on the open neighbourhood xV (x)
1 of x in H1. As shown in the last

paragraph, the value of sHn on xV (x)
1 is also independent of n for n ≥ N(x). Now

{xV (x)
1 : x ∈ K} is an open cover of K which, by the compactness of K, has a

finite subcover {xiV
(xi)
1 : i = 1, 2, . . . ,m}. Put N = max{N(xi) : i = 1, 2, . . . ,m}.

Then sHn(x) is constant for n ≥ N and x ∈ K. Thus the convergence is uniform
on K. !

Let {Hn} be an increasing sequence of closed subgroups of G and suppose that⋃
n≥0 Hn is dense in G. Then limn→∞ sHn(x) exists for each x ∈ H1. However it

is not necessarily the case that this limit is equal to sG(x), see Example 6.6.
The next result is included following the suggestion of Helge Glöckner.

Proposition 5.4. Let the totally disconnected locally compact group G = lim
←

Gi

be an inverse limit of groups Gi where each of the maps qij : Gi → Gj and the limit
homomorphisms qi : G → Gi is onto. Then for every x ∈ G

lim
i

sGi (qi(x)) = sG(x),

where the convergence is uniform on compact subsets of G.

Proof. Let x be in G and choose U < G tidy for x. Then since G is the inverse
limit of {Gi} and since U is open, there is an i such that ker(qi) < U . Since the
kernel of a homomorphism is normal, ker(qi) < U+∩U− and it follows that qi(U) is
tidy for qi(x) and that sGi (qi(x)) = sG(x). The same holds for every j ≥ i because
ker(qj) < ker(qi), hence limi sGi (qi(x)) = sG(x).

That convergence is uniform on compact subsets of G follows as in Proposition
5.3. !

6. Examples

The examples in this section show that many of the above results are sharp and
that certain tempting simplifications of proofs cannot work. Each of the examples
is a restricted product over the integers of copies of a starter group. Usually this
starter group is finite but it is infinite in one case. The identity element of the
starter group is denoted by ι while the identity in the larger product group is
denoted by e.

Example 6.1. Let S3 = {ι, τ, τ2,σ1,σ2,σ3} be the symmetric group on 3 letters.
Define G to be the subgroup of the infinite product SZ

3

G =
{
f ∈ SZ

3 : ∃N such that f(n) ∈ {ι,σ1}∀n ≤ N
}
.

For each N define the subgroup

UN =
{
f ∈ G : f(n) ∈ {ι,σ1} if n ≤ −N, f(n) = ι if −N < n ≤ N

}
.

Define a totally disconnected locally compact topology on G by taking as a neigh-
bourhood base {fUN : f ∈ G, N ≥ 0}. Then the subgroup UN is compact and
open and is isomorphic to the product

(∏
n≤−N{ι,σ1}

)
×

(∏
n≥N S3

)
with the

product topology.
Define a continuous automorphism α of G by

α(f)(n) = f(n + 1) (f ∈ G, n ∈ Z).
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The method for finding tidy subgroups described in Theorem 3.1 will now be illus-
trated by using it to find a subgroup tidy for α.

We start by choosing the compact open subgroup

U =
{
f ∈ G : f(n) ∈ {ι,σ1} if n ≤ 1, f(2) = ι, and f(5) ∈ {ι,σ2}

}
.

Then

U ∩ α(U) =
{
f ∈ G : f(n) ∈ {ι,σ1} if n ≤ 0, f(1), f(2) = ι, and f(4), f(5) ∈ {ι,σ2}

}

so that [α(U) : U ∩ α(U)] =
∣∣S3

∣∣[S3 : {ι,σ2}] = 18. Also,

U+ =
{
f ∈ G : f(n) = ι if n ≤ 2 and f(n) ∈ {ι,σ2} if 3 ≤ n ≤ 5

}

and
U− =

{
f ∈ G : f(n) ∈ {ι,σ1} if n ≤ 1 and f(n) = ι if n ≥ 2

}

so that U+U− *= U .
Step 1: Let V = U ∩ α(U) ∩ α2(U). Then

V =
{
f ∈ G : f(n) ∈ {ι,σ1} if n ≤ −1,

f(0), f(1), f(2) = ι and f(3), f(4), f(5) ∈ {ι,σ2}
}
,

V+ =
{
f ∈ G : f(n) = ι if n ≤ 2 and f(n) ∈ {ι,σ2} if 3 ≤ n ≤ 5

}

and
V− =

{
f ∈ G : f(n) ∈ {ι,σ1} if n ≤ −1 and f(n) = ι if n ≥ 0

}

so that V+V− = V . Also the index

[α(V ) : V ∩ α(V )] = [α(V+) : V+] =
∣∣{ι,σ2}

∣∣[S3 : {ι,σ2}] = 6

has been reduced.
Step 2: It is easily checked that

L =
{
f ∈ G : f(n) = σ1 for finitely many n and f(n) = ι otherwise.

}

and L = {ι,σ1}Z. Since L *⊂ V , V does not satisfy T2. This may be seen directly
because

V++ =
{
f ∈ G : ∃N such that f(n) = ι for all n ≤ N

}
,

which is not closed.
Step 3: The set {ι,σ1}{ι,σ2} is not a subgroup of S3 and so V L is not a group.
Since σ1σ2σ

−1
1 = σ3 does not belong to this set, the group V ′ equals

{
f ∈ G : f(n) ∈ {ι,σ1} if n ≤ −1 and f(n) = ι if 0 ≤ n ≤ 5

}
.

Now
W = V ′L =

{
f ∈ G : f(n) ∈ {ι,σ1} if n ≤ 5

}

satisfies W+ = W and W− = L, so that W = W+W− and W++ = W and W−− = L
are closed. Hence W is tidy and s(α) = [α(W ) : W ∩ α(W )] = 3. The index is
reduced again when passing from V to W .

In this example the argument given in [6] produces the same groups at corres-
ponding steps as the argument used in Theorem 3.1 because

⋂
l∈L lV l−1 equals the

V ′ defined here. Example 6.3 is a case where the two arguments produce different
groups at corresponding steps.
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Example 6.2. Let G, α and W be as in the previous example and let H be the
closed subgroup

H =
{
f ∈ G : f(n) ∈ {ι,σ2} for all n

}
.

Then it is easily checked that

W ′ = H ∩W =
{
f ∈ H : f(n) = ι for all n ≤ 5

}

is a tidy subgroup for α|H and that sH(α|H) = 2. Hence sH(α|H) does not divide
sG(α) in this case.

Example 6.3. Let G be the compact group G = SZ
3 with the product topology

and let V be the subgroup

V =
{
f ∈ G : f(n) ∈ {ι,σ1} if 1 ≤ n ≤ 3

}
.

Let α be the automorphism α(f)(n) = f(n + 1). Then V+ =
{
f ∈ G : f(n) ∈

{ι,σ1} if n ≤ 3
}
, V− =

{
f ∈ G : f(n) ∈ {ι,σ1} if n ≥ 1

}
, and V satisfies T1.

However
V++ =

{
f ∈ G : ∃N such that f(n) ∈ {ι,σ1} if n ≤ N

}

is not closed and so V does not satisfy T2.
Now L = G, whence V ′ = V and W = V ′L = G, which is tidy. However since

{ι,σ1} is not normal in S3,

V ′′ =
⋂

l∈L

lV l−1 =
{
f ∈ G : f(n) = ι if 1 ≤ n ≤ 3

}
.

Hence in this case the argument from [6] produces a different subgroup to the
argument used here. Note that [α(V ) : V ∩ α(V )] = 3 whereas [α(V ′′) : V ′′ ∩
α(V ′′)] = 6, so that the argument from [6] does not decrease the index at every
stage.

Example 6.4. Let F be the abelian group {ι, a, b, ab} isomorphic to Z2 × Z2.
Define G to be the subgroup of the infinite product F Z

G =
{
f ∈ F Z : ∃N such that f(n) ∈ {ι, a} and f(−n) ∈ {ι, b} whenever n ≥ N

}
.

For each m in Z define the subgroups

Am =
{
f ∈ G : f(k) ∈ {ι, a} if k ≥ m, f(k) = ι otherwise.

}

and
Bm =

{
f ∈ G : f(k) ∈ {ι, b} if k ≤ m, f(k) = ι otherwise.

}
.

Define a totally disconnected locally compact topology on G by taking as a neigh-
bourhood base {f(Am×Bn) : f ∈ G, m, n ∈ Z}. Then the subgroups Am×Bn are
compact, open and isomorphic to the product

(∏
k≥m Z2

)
×

(∏
k≤n Z2

)
with the

product topology. The subgroups A =
⋃

m∈Z Am and B =
⋃

m∈Z Bm are closed in
G and G = A×B.

As in earlier examples, let α be the translation automorphism

α(f)(n) = f(n + 1) (f ∈ G, n ∈ Z).

It is easily seen that each of the subgroups Am × Bn is tidy for α. We have
(Am×Bn)+ = Am, (Am×Bn)++ = A, (Am×Bn)− = Bn, (Am×Bn)−− = B and
sG(α) = 2.

Let
H =

{
f ∈ G : f(n) ∈ {ι, ab} for every n

}
.
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Then H is a closed subgroup of G and, since for each f ∈ H we have f(n) = ι
for all but finitely many n, H is a countable discrete subgroup of G. In fact,
H is isomorphic to the direct sum

∑
Z Z2. The quotient G/H may be seen to

be isomorphic to the compact group ZZ
2 with the product topology. For this, let

q̂ : F → Z2 be the homomorphism given by q̂(ι) = 0̄ = q̂(ab) and q̂(a) = 1̄ = q̂(b)
and define q : G → ZZ

2 by

q(f)(n) = q̂(f(n)) (f ∈ G, n ∈ Z).

Then the kernel of q is H and q maps G onto ZZ
2 . Clearly, H is invariant under α and

α|H and α̇ are just the translation automorphisms on
∑

Z Z2 and ZZ
2 respectively.

This example illustrates a number of points concerning tidy subgroups for normal
subgroups and quotient groups.

(1) Since H is discrete, sH(α|H) = 1 and, since G/H is compact, sG/H(α̇) = 1.
Hence sG(α) *= sH(α|H)sG/H(α̇).

(2) The subgroup A0 ×B0 is tidy for α but

H ∩ (A0 ×B0) =
{
f ∈ G : f(0) ∈ {ι, ab} and f(n) = ι otherwise

}
,

which is not tidy for α|H because it does not satisfy T1.
(3) The subgroup A0 ×B2 is tidy for α but

q(A0 ×B2) =
{
f ∈ ZZ

2 : f(1) = ι
}

which is not tidy for α̇ because it does not satisfy T2.
(4) The subgroup A0×B1 is tidy for α and H ∩ (A0×B1) and q(A0×B1) are

tidy for α|H and α̇ respectively.

Example 6.5. This example uses the definitions and notation the previous one.
Let E = 〈a, b : a2 = ι = b2〉. Then E is isomorphic to the free product Z2 ∗ Z2.
Define G1 by

G1 =
{
f ∈ EZ : ∃N such that f(n) ∈ {ι, a} and f(−n) ∈ {ι, b} whenever n ≥ N

}
.

For each m in Z define the subgroups

A1,m =
{
f ∈ G1 : f(k) ∈ {ι, a} if k ≥ m, f(k) = ι otherwise.

}

and
B1,m =

{
f ∈ G1 : f(k) ∈ {ι, b} if k ≤ m, f(k) = ι otherwise.

}
.

and let {f(A1,m × B1,n) : f ∈ G, m, n ∈ Z} be a base of neighbourhoods for a
totally disconnected locally compact topology on G1. The sets A1,m × B1,n are
compact open subgroups of G1 for m > n but are not a subgroups for m ≤ n. Note
that, if m ≤ n, then the subgroup generated by A1,m×B1,n is not compact because
it contains a closed subgroup isomorphic to Z2 ∗ Z2.

Let α be the translation automorphism. Then each of the subgroups A1,m×B1,n,
(m > n), is tidy for α and sG1(α) = 2. It is important for this example to note
that they are the only subgroups tidy for α.

The subgroup H1 will be defined to be the kernel of the composition of certain
homomorphisms. For the first homomorphism, let F and G be as in the previous
example and let r̂ : E → F be the homomorphism which sends a "→ a and b "→ b.
Define r : G1 → G by

r(f)(n) = r̂(f(n)) (f ∈ G1, n ∈ Z).
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The second homomorphism is defined as follows. Write G = A × B as in the
previous example and let t be the automorphism of G such that t|A is the identity
map and t|B is the shift

t|B(f)(n) = f(n + 1) (f ∈ B, n ∈ Z).

The third homomorphism is the map q : G → ZZ
2 described in the previous example.

Then H1 is the kernel of the homomorphism q ◦ t ◦ r : G1 → ZZ
2 . Each of r, t and q

commutes with α (on G or G1) and so α(H1) = H1.
Now let U be a subgroup of G1 which is tidy for α. Then U = A1,m×B1,n where

m > n. Hence r(U) = Am×Bn ⊂ G where m > n. Hence t◦r(U) = Am×Bn−1 ⊂ G
where m > n. Hence q ◦ t ◦ r(U) = Am × Bn−1 ⊂ ZZ

2 where m > n. Since m > n,
any f ∈ Am × Bn−1 must have f(n) = ι and so Am × Bn−1 is not tidy for α.
Therefore there is no tidy subgroup of G1 whose image in G1/H1 is tidy.

Example 6.6. Let G be as in Example 6.4. We describe certain subgroups of G.
For each n ≥ 0, define the subgroup Pn of ZZ

2 by

Pn =
{
2n periodic elements of ZZ

2

}
.

Then P0 is the group of constant functions in ZZ
2 , so that

∣∣P0

∣∣ = 2, and in general
Pn is a finite group with

∣∣Pn

∣∣ = 22n

. Now recall that q : G → ZZ
2 is a surjective

homomorphism and define Hn = q−1(Pn), n ≥ 0. Then Hn is a closed discrete
subgroup of G for each n.

It is easily verified that Hn ⊂ Hn+1 for each n and that
⋃

n≥0 Hn is dense in G.
Since each Hn is discrete we have sHn(α|Hn) = 1 for each n. On the other hand,
we have already seen in Example 6.4 that sG(α) = 2. Hence

lim
n→∞

sHn(α|Hn) *= sG(α).

Example 6.7. Let G be the compact group ZZ
2 with the product topology and let

H be the two-element subgroup of G consisting of the constant functions. Let α be
the translation automorphism of G. Then α(H) = H.

The subgroup {e} is tidy for α|H . However the only tidy subgroup for α is G.
Hence there is no tidy subgroup of G whose intersection with H is {e}.
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